How to Count Efficiently all Affine Roots of a Polynomial System

نویسندگان

  • Ioannis Z. Emiris
  • Jan Verschelde
چکیده

Polynomials are ubiquitous in a variety of applications. A relatively recent theory exploits their sparse structure by associating a point connguration to each polynomial system; however, it has so far mostly dealt with roots having nonzero coordinates. We shift attention to arbitrary aane roots, and improve upon the existing algorithms for counting them and computing them numerically. The one existing approach is too expensive in practice because of the usage of recursive liftings of the given point connguration. Instead, we deene a single lifting which yields the desired count and deenes a homotopy continuation for computing all solutions. We enhance the numerical stability of the homotopy by establishing lower bounds on the lifting values and prove that they can be derived dynamically to obtain the lowest possible values. Our construction may be regarded as a generalization of the dynamic lifting algorithm for the computation of mixed cells. Une construction eecace pour compter les racines aanes d'un systtme polynnmial RRsumm : Des polynnmes apparaissent dans plusieurs applications diverses. Une thhorie relativement rrcente considdre leur structure creuse en associant une conn-guration de points chaque systtme polynnmial. Or, elle a jusqu'ici surtout tudii les racines coordonnnes diiirentes de zzro. Nous mettons l'accent sur les racines aanes arbitraires, et nous proposons des algorithmes eecaces pour les compter et les approcher nummriquement. La seule approche qui existe aujourd'hui est trop cooteuse en pratique cause de l'application d'un rellvement rrcursif de la conngu-ration de points donnne. Nous dddnissons par contre un seul rellvement qui permet l''numeration des racines et dddnie une homotopie pour les calculer toutes. Pour ammliorer la stabilitt nummrique de l'homotopie, nous ddrivons des bornes inffrieures sur les valeurs du rellvement et nous ddmontrons qu'elles peuvent tre calculles dy-namiquement aan d'atteindre leur valeurs minimales. Notre construction ggnnralise le rellvement dynamique pour calculer toutes les cellules mixtes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed Order Controller for Schur Stability

If the characteristic polynomial of a discrete-time system has all its roots in the open unit disc of the complex plane, the system is called Schur stable. In this paper, the Schur stabilization problem of closed loop discrete-time system by affine compensator is considered. For this purpose, the distance function between the Schur stability region and the affine controller subset is investigated.

متن کامل

Stability Optimization for Polynomials and Matrices

Suppose that the coefficients of a monic polynomial or entries of a square matrix depend affinely on parameters, and consider the problem of minimizing the root radius (maximum of the moduli of the roots) or root abscissa (maximum of their real parts) in the polynomial case and the spectral radius or spectral abscissa in the matrix case. These functions are not convex and they are typically not...

متن کامل

AFFINE SUBGROUPS OF THE CLASSICAL GROUPS AND THEIR CHARACTER DEGREES

In this paper we describe how the degrees of the irreducible characters of the affine subgroups of the classical groups under consideration can be found inductively. In [4] Gow obtained certain character degrees for all of the affine subgroups of the classical groups. We apply the method of Fischer to the above groups and, in addition to the character degrees given in [4], we obtain some ne...

متن کامل

Hybrid model predictive control of a nonlinear three-tank system based on the proposed compact form of piecewise affine model

In this paper, a predictive control based on the proposed hybrid model is designed to control the fluid height in a three-tank system with nonlinear dynamics whose operating mode depends on the instantaneous amount of system states. The use of nonlinear hybrid model in predictive control leads to a problem of mixed integer nonlinear programming (MINLP) which is very complex and time consuming t...

متن کامل

A Polyhedral Method to Compute All Affine Solution Sets of Sparse Polynomial Systems

To compute solutions of sparse polynomial systems efficiently we have to exploit the structure of their Newton polytopes. While the application of polyhedral methods naturally excludes solutions with zero components, an irreducible decomposition of a variety is typically understood in affine space, including also those components with zero coordinates. We present a polyhedral method to compute ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 93  شماره 

صفحات  -

تاریخ انتشار 1999